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Abstract:We consider a system of ordinary differential equations obtained by modifying the classical SIR model
in epidemiology in order to account for the particular features of COVID19 and the structure of the available
statistical data. Its main feature is that the infectious state is being split in two different stages. In the first one,
which lasts a few days after being infected, the individuals are considered to be contagious and able to spread
further the disease. After this, the individuals are considered to be isolated and this second stage lasts until either
recovery or death is reported. The parameters of the model are fitted for several countries (Germany, Italy, Spain,
Russia, USA, Romania) such that the solution matches the known number of new cases, active cases, recoveries
and deaths. The values of these parameters give insight regarding the evolution of the pandemy and can reveal
different policies and approaches in reporting the official data. For example one of them can indicate that in certain
countries a substantial amount of cases were reported only postmortem. The variation across several countries of
another parameter, whichmodels the average convalescence time (the duration of the second stage of the infectious
state), points to the fact that the recoveries are reported at different rates, in some cases with significant delays.
Since it can be assumed that this is only a matter of reporting, we also perform additional simulations for these
countries by taking the average convalescence time the value of Germany, which is the smallest within the whole
range. The conclusion is that under this assumption, the evolution of the active cases for example in Italy and
Spain, is not significantly different to that in Germany, the comparison being based on the fact that these countries
showed a similar number of cases within the considered period.
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1 Introduction
The basic model which describes the time evolution
of an epidemy is the SIR model introduced in 1927
by Kermack and McKendrick. Its principle lies at the
core of the so called compartmental models in epi
demiology, see [1], [2]. In the original setting the
population is divided into several compartments ac
cording to the states: S  susceptible, I  infected and
R  recovered. The variables S, I,R denote the num
ber of individuals in the corresponding state, while the
dynamics of the transitions between different states
are described the following system of ordinary differ
ential equations:

dS

dt
= −β · I · S

N
dI

dt
= β · I · S

N
− α · I

dR

dt
= α · I (1)

Susceptible individuals get infected at a rate which
is proportional to the numbers S and I , while the tran
sition from I to R occurs at a rate proportional to the
number I of infected individuals. The parameter β
is called the transmission rate and α is the recovery
rate. An individual which has recovered is consid
ered to be immune and cannot contribute anymore to
the spread of the disease. The number N denotes the
size of the whole population and the presence of the
factor N−1 is necessary for the correct scaling of the
bilinear terms.

The SEIR model, see [1], [2], considers the addi
tional state E of exposed individuals during the in
cubation time, situated between S and I , where they
don’t show yet the symptoms and cannot spread the
disease.

In context of the outbreak of the COVID19 pan
demy at the beginning of 2020, several compartmen
tal models of type SIR, SEIR and modifications of
them were applied in order to describe the evolu
tion of this disease. The papers [3] and [4] present
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an overview of such models with applications to
COVID19. Applications to concrete countries are
presented in [5], [6], [7], where the authors employ
extensions of the SEIR model.

An important aspect related to the epidemic mod
els based on differential equations is to fit the parame
ters in order that the components of the solutionmatch
given statistical data from certain countries. Here we
mention the works [8], [9], [10], [11] which use dif
ferent algorithms in order to compute the optimal pa
rameters for models of SIR or SEIR type. Application
of discrete models of SEIR type based on difference
equations with parameter fitting are reported in [12],
[13]. In the papers [11], [13] the transmission rate β
is considered to be timedependent, while in all other
references mentioned above this parameter is taken as
constant in time. However, this latter choice is real
istic only for shorter time intervals or for the simu
lation of theoretical scenarios. In paper [10] the re
covery and mortality rates are considered to be time
dependent.

In this paper we consider a new modification
of the SIR model with timedependent transmis
sion rate in order to account for the features of
the COVID19 disease. The parameters of the
ODEsystem are fitted by an optimization algo
rithm based on the novel method introduced in
[15] in order to match the statistical data available
at https://www.worldometers.info/coronavirus/. The
statistics record the numbers of new infections, the
current infections, the recoveries and the deaths.
Since data for E are not available, we will not con
sider a model of SEIR type. The argument for this
choice is similar to that presented in [8]: since we
want to identify the parameters of the model, but we
do not know at what stage of the infection a per
son enters in the statistics, introducing a latent or ex
posed state beyond the active one would be an over
complexification with respect to the actual data uncer
tainty. Instead of this approach, we introduce further
states as described below.

Firstly, we add a component D, which counts the
death cases and consider transitions into D from the
state I and sometimes directly from S, in the case of
infections reported only after the death of the individ
ual. Secondly, unlike in the case of an usual epidemy,
an individual infected by SARSCoV2 can be conta
gious also 12 days before the onset of the symptoms
and in principle up to 10 days after that. However,
in practice a symptomatic individual is in most cases
isolated or quarantined, and therefore the time of ef
fectively spreading the disease can be considered ba
sically up to a few days after the onset of the symp
toms. In [14] this time is considered to be of about
only 45 days. This means that a person is highly in
fectious 12 days before the onset of the symptoms

and 23 days after that.
For the infectious state we will consider therefore

two stages. In the first one, I1, which lasts relatively
short, the individual can spread the disease, while
death is unlikely to occure. The following stage I2
lasts until the individual is reported as recovered or
dead and for this category we assume that it does not
contribute to the spread of the disease. The statisti
cal data contain nevertheless only the aggregate value
I = I1 + I2 and in order to initialize the simulations
we need an additional parameter f defined as the ratio
between I1 and I at the beginning of the computation.

We consider therefore the following system of or
dinary differential equations:

dS

dt
= −R(t)

Tinf
· I1 ·

S

N
− µ̃d · S

dI1
dt

=
R(t)

Tinf
· I1 ·

S

N
− T−1

inf · I1

dI2
dt

= T−1
inf · I1 − T−1

conv · I2 − µd · I2
dR

dt
= T−1

conv · I2
dD

dt
= µd · I2 + µ̃d · S (2)

In this model we consider the form β(t) = R(t) ·
T−1
inf . The term R(t) denotes the time dependent ef

fective reproduction number, i.e. the average number
of further infections produced by the contacts with
one infectious individual. At the beginning of the
epidemy its value is equal to R0, the so called ba
sic reproduction number, but after that it may vary
due to restrictions, social distancing, variable inten
sity of testing, etc. Tinf denotes the average time
spent in the infectious state I1 and consequently we
have α = T−1

inf for the transition rate from I1 to I2.
In the setting of the present paper we will con

sider that R(t) has constant values over 4 consec
utive days. Daily variations would increase signif
icantly the number of parameters to be fitted and
would also leed to sharp fluctuations of the solution
curve, while considering larger time intervals would
possibly smooth out too much from the details of the
computed profile. We chose therefore the valuewhich
delivers a good compromise between a setting with a
high computational complexity and possible compu
tational artifacts and a setting with too much averag
ing, which misses essential details.

By observing the statistical data we can remark
that while death cases are reported more or less
timely, the average time elapsed until recovery is re
ported may vary from one country to another, being
usually much larger than the effective time of being
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physically ill. By Tconv we denote therefore the aver
age convalescence time, i.e. the time spent in the state
I2 until being moved into the state R. Alternatively,
individuals in state I2 can die at the daily death rate
µd. For countries where the reporting policy counts
COVID19 cases also if the positive testing occured
only after the death of the person, we will assume a
positive death rate µ̃d which describes the transition
directly fromS toD. Otherwise this parameter is con
sidered to be 0.

The goal of this paper is to perform numerical sim
ulations of the model (2) with parameters chosen in
order to fit the statistical data. Since S + I1 + I2 +
R+D = N , for comparison we take as reference the
available data for I = I1 + I2, R and D. The statis
tics record also the daily number of new cases, but this
quantity influences the reproduction numberR(t) and
thus indirectly the value of I . The daily changes in the
statistical data set are used within the method of fit
ting the parameters introduced by the present author
in [15] and applied also in the current paper. As nu
merical solver for the ODE system we use a variant
of a stochastic RungeKutta method. For computing
a predictor, instead of simulating a jump process as
in the original stochastic method, or performing an
Euler step as in the classical RungeKutta method,
the scheme used here and in the mentioned reference
takes into account the variations of the data set, after
which the precision is improved by using correction
steps of RungeKutta type. The solutions computed
in this way are subjected to an optimization procedure
which searches for the set of parameters which min
imizes the mean square error between the computed
and the given data.

In Sections 27 of the present paper we perform
several numerical experiments for Germany, Italy,
Spain, Russia, USA andRomania under different con
ditions and assumptions. The simulation for each
country starts from the day where the number of cases
was around 100. Unlike in other works in this area,
where the considered time intervals are considerably
shorter, in the present paper the parameter fitting is
performed according to the method described above
for 100 days but also for 64 days, in order to compare
the values of Tinf , Tconv, µd, µ̃d which in the current
model are assumed to be constant over time. The only
exception is Spain, where these periods are of 80 and
56 days, since here from a certain date onwards the
recoveries weren’t reported anymore.

The parameter Tinf is intrinsic to the disease and
this fact is confirmed also by the similar values be
tween 3 and 4 for the considered countries, with the
exception of the USA, where it is smaller by one unit.
The values corresponding to the time intervals of 64
and 100 days do not exhibit significant changes.

The parameter Tconv describes basically the aver

age time spent by an individual in the state I2 until
he is reported in the statistics as recovered. Its value
shows major differences from country to country, re
flecting significant differences in the reporting poli
cies. In the cases of Germany (with µ̃d = 0) and Spain
(with µ̃d > 0) the values of this parameter for the
time intervals of 64 and 100 days show a remarkable
stability, since the values don’t change in a signifi
cant way. For the other countries we can notice that
the value corresponding to the interval of 100 days is
smaller than for 64 days, which reflects that the re
coveries were not reported at a constant rate. At the
beginning of the epidemy the average convalescence
time was considered to be larger, while with the pass
ing of time and presumably a better organization, the
corresponding time interval could be reduced.

For Germany we have a value for Tconv of about
12 days, the smallest among all considered countries,
which means that the reporting of the recoveries oc
curs relatively fast. This number plus the value of
Tinf between 3 and 4 gives an average duration of
the disease of about 16 days. As mentioned in [14],
an infected individual can spread the virus also 12
days before the onset of the symptoms, so we have a
time range of about 14 days after this moment, which
corresponds basically to the recommended quarantine
period for COVID19.

Therefore, a value of Tconv smaller than the refer
ence value of 12 can hardly be imagined and can not
correspond to any reasonable reporting policy. How
ever, for certain reasons which root in the different
reporting policies, the value of Tconv can be larger,
ranging between 18 in the case of Spain to up to 80 in
the case of the USA.

Nevertheless, for this parameter we can take the
reference value as being that of Germany and con
sider that the differences to other countries consist ba
sically in delays in reporting the recoveries. The con
sequence of this fact is that the true profile of the curve
of active cases I in these countries might be actually
much lower than that reflected by the official statis
tics. We perform therefore simulations by taking for
the other countries the reference value of Tconv from
Germany. This approach can deliver a uniform basis
in order to compare the evolution of the figures in the
considered countries.

The parameter µd represents the transition rate
from I2 into D and the parameter µ̃d is the rate of
new cases reported only at the death. That is, in our
model we have a direct transition from the state S into
D. The basic assumption is µ̃d = 0, but for severals
countries it turns out that assuming such transitions
explains better the profile of the curve of the death
cases D.

In Section 8 we perform a comparison of the in
fection dynamics between the different countries, as

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2020.8.15 Flavius Guiaş

E-ISSN: 2415-1521 117 Volume 8, 2020



well as a sensitivity analysis regarding the reproduc
tion number. In our model we assume that the repro
duction numberR(t) is time dependent, having a con
stant value over 4 consecutive days. This ensures a
high degree of flexibility in order to obtain a parame
ter set providing a good approximation of the profile
of the curve of the active infections I = I1+I2. Plot
ting the time evolution of R(t) for several countries
shows basically a similar behaviour. Although the
differences between the profiles are not major ones, a
sensitivity analysis for this parameter shows that the
model is highly sensitive with respect to the repro
duction number. Comparing the curve of active infec
tions obtained for the parameter vectors 0.95R,R and
1.05R, whereR is the computed optimized parameter
vector for Germany, we can see that the peak of the
curve of I has for 0.95R about half of the height of
the curve forR, while for 1.05R the increasing factor
is of about 2.

The results of this paper are summarized and dis
cussed in Section 9, while the final section is dedi
cated to conclusions and outlook.

In this paper all values of the parameters are pre
sented rounded to two decimal digits, but in the com
putations we used the full precision.

2 Simulations for Germany
The values of the timeindependent parameters for
which our model fits the data for Germany starting
at 01.03.2020 are given in Table 1.

days Tinf Tconv µd/µ̃d = 0 µd/µ̃d imp.err.
64 3.97 12.38 0.0043  
100 3.92 11.95 0.0044 0.0034 / 2.54e7 0.078%

Table 1: Parameters for Germany

The following explanations of the structure of the
table are valid also for the simulations performed for
the other countries.

We compare first the fitted values of the time in
dependent parameters over time ranges of 64 and 100
days in order to check the assumption of time homo
geneity. The values in the case of Germany suggest
strongly that this is indeed the case. Nevertheless, our
main focus will be laid on the simulation over 100
days and the values for the other parameters are con
sidered only for this situation. For this reason, the
row in the table for each country corresponding to the
simulations over 64 days contains only the data for
the most relevant of the alternatives µ̃d = 0 or ̸= 0.

The 4th column of the table represents the value
of µd estimated under the assumption µ̃d = 0, while
the 5th column contains the estimated values of µd

and µ̃d without any restriction. One one these two
columns is marked with grey, which means that the

Figure 1: Simulated curves and data for Germany

corresponding assumption will not be considered in
our final analysis. The choice for Germany is mo
tivated by the fact that considering µ̃d ̸= 0 leads to
no significant improvement in the error relative to the
data set, which in this case is of only 0.078%. This im
provement factor is written in the last column of the
table. Another indicator for the fact that we can con
sider µ̃d = 0 is the order of magnitude of µ̃d which
is of 10−7. As we will see for other countries, the
assumption µ̃d ̸= 0 can lead to an improvement of
the error up to 1519% and to an order of magnitude
for µ̃d of 10−6. The small values of this parameter in
both cases is explained by the fact that it represents
the transition rate from S to D, where S denotes the
number of susceptibile individuals, which is a very
large one, close to the total population of the country.

The other parameters for Germany are f = 0.66
andR =[2.62 1.20 2.14 2.17 1.81 1.66 1.24 1.15 1.09
0.66 0.79 0.90 0.64 0.83 0.98 0.12 0.99 1.01 0.90 0.87
0.77 1.04 1.02 1.05 1.20]. The vector R has 25 ele
ments, since we perform the simulation for 100 days
and assume that R(t) is constant over 4 consecutive
days.

The results of the simulation with the given values
of the parameters are plotted in Figure 1.

The plots corresponding to each country contain
the simulated curves and the data for I = I1 +
I2, R,D, that is the active cases, the recoveries and
the deaths, as well as the simulated values for I1. For
Germany we can notice a very good agreement be
tween data and simulations and we can conclude that
our model, altough minimalistic, is in principle a cor
rect approach for describing the time evolution of the
COVID19 epidemy.
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3 Simulations for Italy
The values of the timeindependent parameters for
which our model fits the data for Italy starting at
22.02.2020 are presented in Table 2.

days Tinf Tconv µd/µ̃d = 0 µd/µ̃d imp.err.
64 3.61 45.23 0.0070  
100 3.58 37.83 0.0077 0.0028 / 4.03e6 19.83%

Table 2: Parameters for Italy

The other parameters are f = 0.78 and R =[2.70
1.97 1.59 1.62 1.58 1.41 1.46 1.07 1.09 1.03 0.96 0.97
0.97 0.93 0.84 0.90 0.85 0.64 0.50 0.55 0.24 0.34 0.30
0.31 0.42].

We can notice that the assumption µ̃d = 0 does not
capture correctly the profile of the curve of the deaths,
as can be seen in Figure 2. However, if we allow
transitions from S to D, according to the table above
(last column) the approximation error is improved by
19.83% , which is a significant figure, and the value
of µ̃d is of order 10−6, being larger by a factor 10
compared to the same value estimated for Germany.
The simulation under this assumption shows that the
curve corresponding toD is approximated much bet
ter, as can be seen in Figure 3. Here the dotted lines
correspond to the deaths originating form the states I2
and S.

Figure 2: Simulated curves and data for Italy, µ̃d = 0

We conclude therefore that our simulations reflect
the known fact that in Italy the tests for COVID19
were performed also after the death of the individu
als, which in this case enter into the statistics of the
total cases only post mortem, directly from S into the
category D. According to the results of the present
model, which have to be interpreted essentially in a
qualitative manner, more than half of the deaths in

Figure 3: Simulated curves and data for Italy, µ̃d ̸= 0

Italy which were associated to COVID19 were not
of patients which were positively tested during their
lifetime, but only after their death.

Moreover, comparing the values of Tconv esti
mated for 64 and 100 days, we can remark that the
difference is also significant: approximately 45 and
38 days respectively. This is an indicator that in Italy
the reporting of the recoveries didn’t take place at a
constant rate as it was the case in Germany.

Secondly, the value of Tconv for Italy is much
larger than 12 (the value for Germany), which indi
cates that the official statistics don’t keep up the pace
with the effective situation of the recoveries.

Figure 4: Active cases for Italy with Tconv = 12.

Figure 4 shows therefore a comparison of the
curves of the active cases for Germany and Italy with
the estimated parameters in order to fit the data, but
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additionally also with the curve computed for Italy by
taking Tconv = 12. This is basically the same value
as for Germany and on average it corresponds to the
reallife duration of the disease in its second part, af
ter the initial stage of Tinf ≈ 4 days. We can remark
that in this case the curve of the active cases shrinks
significantly and its behaviour is not substantially dif
ferent from the curve corresponding to Germany.

4 Simulations for Spain
The values of the timeindependent parameters for
which our model fits the data for Spain starting at
01.03.2020 are given in Table 3. Here we perform the
simulations only over maximally 80 days, since for
Spain no further data regarding the recovered cases
are available.

days Tinf Tconv µd/µ̃d = 0 µd/µ̃d imp.err.
56 3.06 19.59  0.0084/ 3.14e6 
80 3.19 18.08 0.0077 0.0036 / 5.20e6 16.84%

Table 3: Parameters for Spain

The other parameters are f = 0.25 and R =[2.50
2.39 2.19 1.61 1.42 1.56 1.16 1.04 0.96 0.91 0.93 1.22
0.98 0.63 0.75 0.98 0.95 0.99 0.91 1.07].

In the case of Spain we can remark that the val
ues of the parameters fit into the assumption of time
homogeneity, since their values for 56 and 80 days
don’t exhibit significant differences. By allowing
transitions from S toD we obtain an improvement in
the error of almost 17% and the corresponding death
rate is also of order 10−6, so in this case we will
stick to the same assumption as for Italy, namely that
µ̃d ̸= 0. This time we plot only the results of the sim
ulations under these conditions, which can be seen in
Figure 5. In contrast to the case of Italy, where the last
part of the curve of the recoveries is not well approxi
mated due to the lack of timehomogeneity of the pa
rameter Tconv, here the same curve is approximated
much better, with the exception of the middle part,
where we can notice for a period a lower frequency in
reporting the recoveries, followed by a sudden jump.
But before and after this part, the estimated rate of re
porting the recoveries fits the available data in a very
good manner.

Comparing the values of Tinf , we note that they
are similar to Germany and Italy, while Tconv ≈ 18 is
much closer to the corresponding value for Germany.
As in the case of Italy, for Spain we perform also a
simulation with Tconv = 12 and the result is plotted
in Figure 6. Of course, when comparing such figures,
one has also to take into account that the population
size of Germany is by a factor of about 1.4 larger than
in the case of Italy and by a factor of 1.8 larger than
the population size of Spain.

Figure 5: Simulated curves and data for Spain

Figure 6: Active cases for Spain with Tconv = 12.

5 Simulations for Russia
The values of the timeindependent parameters for
which our model fits the data for Russia starting at
17.03.2020 are given in Table 4.

days Tinf Tconv µd/µ̃d = 0 µd/µ̃d imp.err.
64 3.80 43.51 0.0011  
100 3.53 29.42 0.0009 0.0006 / 1.31e7 0.21%

Table 4: Parameters for Russia

We further have f = 0.17, R =[1.74 1.42 2.65
1.43 2.05 1.38 1.46 1.56 1.36 1.29 1.15 1.27 1.25
1.00 1.00 0.96 0.85 0.83 1.05 1.00 1.02 0.97 1.06 0.79
1.06];

The fitted parameters show the fact that for Russia
Tconv is not time homogeneous and is substantially
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larger than the standard value in the case of Germany.
But, similar to this country, we may assume also that
µ̃d = 0, that is, we don’t have transitions S → D.

Figure 7 plots the simulation results for Russia.
The virtual curve of active cases by considering the
reference value Tconv = 12 is represented here in the
same plot. The same will be the case for the following
countries.

The low profile of the death curve shows that the
case fatality rate for Russia is significantly smaller
than in the other countries, which might indicate dif
ferent criteria for recording the deaths in conjunc
tion with COVID19. Probably deaths are reported
as such only if the disease had a decisive role in caus
ing them and not only in the context of a positive test
result.

Figure 7: Simulated curves and data for Russia

6 Simulations for the USA
The values of the timeindependent parameters for
which our model fits the data for the USA starting at
01.03.2020 are given in Table 5.

days Tinf Tconv µd/µ̃d = 0 µd/µ̃d imp.err.
64 2.59 95.35 0.0046  
100 2.59 79.85 0.0025 0.0012 / 1.81e6 6.87%

Table 5: Parameters for the USA

We further have f = 0.56, R =[2.64 1.93 1.31
1.57 1.58 1.42 1.52 1.17 1.27 1.06 0.92 1.01 0.98
1.06 0.91 1.05 0.97 0.92 0.99 1.09 0.85 0.93 0.69 0.86
1.52].

We first notice that, in contrast to the other coun
tries, the value Tinf = 2.59 is with one unit smaller.
Since the values of the reproduction number R(t) are
more or less similar, we conclude that the spreading

of the epidemy in the USA occured at a higher speed.
A possible explanation for this is the fact that here the
disease has spread mostly in agglomerated districts of
major cities.

The different values of Tconv show that there is
no time homogeneity and that the reporting of the re
coveries occur at an extremely slow rate compared to
all other countries. However, in the last part of the
considered period, the rate of reporting the recover
ies shows a significant increase which is reflected in
higher figures in the data set than in the computed
curve. We can also notice a slight effect of transi
tions of the type S → D, but not as accentuated as in
the case of Italy or Spain. However, since the value
of µ̃d is of magnitude 10−6 and not 10−7, we plot the
results of the simulations under this assumption.

Figure 8: Simulated curves and data for the USA

7 Simulations for Romania
The values of the timeindependent parameters for
which our model fits the data for Romania starting at
14.03.2020 are given in Table 6.

days Tinf Tconv µd/µ̃d = 0 µd/µ̃d imp.err.
64 4.18 26.70 0.0055  
100 3.69 22.85 0.0044 0.0015 / 5.42e7 4.84%

Table 6: Parameters for Romania

For the other parameters we have f = 0.43,
R =[1.47 1.04 2.17 1.63 1.24 1.53 1.08 0.98 1.09 1.00
1.15 0.77 0.94 1.00 0.72 0.12 1.68 0.90 0.70 0.98 1.13
1.09 1.17 1.39 0.96].

We can notice slight effects of time inhomogene
ity in the parameters Tinf and Tconv. The value of
the latter is however not so large, ranking on the third
place in an increasing order, after Germany and Spain,
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and closer to these two countries than the values of
3880 for Italy and USA. For Romania we have also
a small amount of transitions of the type S → D,
but the effect is not significant (error improvement of
only 4.84%) and therefore for the plot we will con
sider that µ̃d = 0. Moreover, the estimated value for
µ̃d is of order 10−7, similar to Germany and Russia, in
contrast to the order of 10−6 for the other three coun
tries.

Figure 9: Simulated curves and data for Romania

8 Comparison of the infection
dynamics

Wewill compare next the infection dynamics between
the considered countries. The apparition of new in
fection cases is driven by the transmission rate β(t) =
R(t)/Tinf , where the reproduction number R(t) de
scribes the average number of further infections pro
duced by an infected individual and Tinf is the aver
age time spent in the contagious state.

If we consider a single country, the value of R(t)
is sufficiently relevant in order to evaluate the future
evolution of the epidemy. If its value is larger than
1, then the epidemy is expanding and the number of
new infections is increasing, while for values less than
1 the number of cases is decreasing.

Figure 10 shows the time evolution of the repro
duction number R(t). We note that the profiles for
the considered countries are basically similar, the dif
ferences between the curves being small. However,
the solutions of the equation system (2) turn out to
be highly sensitive regarding this parameter. Fig
ure 11 illustrates a sensitivity analysis with respect
to R(t). The results show a high sensitivity of the
model regarding the reproduction number. If we in
crease or decrease the timedepedenent vector R(t)

Figure 10: The evolution of the reproduction number
R(t) in different countries

Figure 11: Comparing the dynamics of I = I1 + I2
for R, 0.95 ·R and 1.05 ·R (Germany)

by only 5%, the maximum of the curve of the active
cases increases or decreases roughly by the factor 2.

If we compare different countries, this high sensi
tivity shows that even small differences in the values
of the reproduction number can lead to large differ
ences in the numbers of new infections. Moreover,
the comparison of the reproduction number R(t) is
relevant only if for the considered countries we have
the same value for Tinf . This parameter is intrinsic to
the disease and in our examples it has similar values,
between 3 and 4 (less that 3 only for the USA).

But even these small differences in Tinf and there
fore in β(t) = R(t)/Tinf can reflect in considerable
changes in the apparition of the new cases, so a more
realistic comparison of the dynamics in the different
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Figure 12: The evolution of the transmission rate
β(t) = R(t)/Tinf in different countries

countries can be read from the plot of the transmission
rate β(t). This is illustrated in Figure 12. We can see
that on average the largest values of the factor β are
associated to the USA and secondly to Russia. This
provides an explanation for the fact that here the epi
demy has spread at a higher speed than in the other
countries considered in this paper.

9 Discussion
In this section we will summarize the results of the
present paper.

The comparison of the statistical data for Germany
and Spain with the results of the simulations shows a
very good agreement, which indicates that the consid
ered model (with its two variants regarding the death
rates µd, µ̃d) is in principle suitable for describing the
spreading of the COVID19 disease among the popu
lation.

While the assumption of time homogeneity for the
infectious period Tinf can be verified for each coun
try, in case of the convalescence period Tconv (aver
age time until an infected individual is reported as
recovered) this assumption holds basically for Ger
many, Spain and Romania, while for Italy, Russia and
USA a comparison of parameters fitted for 64 and 100
days shows significantly different values. Moreover,
if for Germany the value of this parameter is of about
12 days, for the other countries it ranges from 18 in
the case of Spain to about 80 in the case of the USA,
showing therefore more or less significant delays in
reporting the recoveries, if we take as reference the
rate for Germany.

If for Italy and Spain, countries where the number
of cases was in the considered period similar to Ger
many, we run a scenario with the value Tconv = 12

corresponding to Germany, we can conclude that the
real curves of active cases of these three countries
would be in fact not so far away from each other. Of
course, this interpretation has also to take into account
that the population of Germany is by a factor of 1.4
larger than the population of Italy and 1.8 times larger
than the population of Spain.

We also considered the possibility that new cases
of COVID19 may be reported only after the death
of the individuals, that is that we have transitions di
rectly from the state S (susceptible) into D (dead).
The data for Italy and Spain indicate a strong effect of
this type. In the case of the USA we can observe also
this effect, but not as accentuated, while for Romania
only a slight one, which we finally chose to neglect.
In contrast to these situations, the data for Germany
and Russia suggest that here we have no such effect
at all.

A comparative plot of the effective reproduction
number R(t) for the considered countries exhibited
basically similar profiles for all of them. However, a
sensitivity analysis regarding this parameter showed
that the curve of active cases is highly sensitive with
respect to the reproduction number. By raising or
lowering the values of R(t) with only 5%, the max
imum of the curve of active cases increases, respec
tively decreases, with the factor 2.

Due to this fact and to the slight differences of
the parameter Tinf between the different countries,
a better comparison of the infection dynamics can
be read out from the plot of the transmission rates
β(t) = R(t)/Tinf . This picture shows that on av
erage this parameter is largest for the USA and then
for Russia, the two countries where the epidemy has
spread at a higher speed than in the others. This can be
seen either from the original data reporting the daily
new cases (which are not plotted in this paper) or by
the number of active cases, even in the scenario with
Tconv = 12 as in Germany, which for the USA and
Russia is higher than in the other countries analyzed
in the present paper.

10 Conclusion
In this paper we use ordinary differential equations
in order to describe the evolution of the COVID19
pandemy. The approach belongs to the socalled com
partmental models, where the individuals can change
from one state to another according to certain rates.
We consider a modified SIR model which, to our
knowledge, is novel in the literature dedicated to this
topic. We distinguish the state S for susceptible in
dividuals and instead of considering only one infec
tious state I as in the classical approach, we split it
into the substates I1 of contagious individuals and I2
where the individuals are isolated and can not spread
the disease anymore. The reason for this is the fact
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that the recoveries, corresponding to the state R, are
reported in different countries, due to their peculiar
ities, at different rates. This means that a unique in
fectious state I would last until the recovery or death
is reported (the latter corresponding to the state D),
which may correspond possibly to a long time spent
in the infectious state, much beyond the period where
one is effectively contagious. Additionally we intro
duce another novel feature, namely the possibility of
transitions from S intoD, which means that a certain
number of cases is discovered or reported only after
the death of the individual.

Another feature of the present model, which is ig
nored by many similar approaches in the literature, is
the fact that the transmission rate of the infection is
considered to be timedependent. Especially in con
junction with a relatively long time interval of 100
days, this fact poses a challenging problem for the al
gorithm of parameter fitting. The goal of this step is
to find an optimal set of parameters such that the solu
tions delivered by the model matches the given statis
tical data. The optimization procedure used here re
lies on a novel algorithm based on stochastic Runge
Kutta methods, where the predictor is computed nei
ther by Euler steps as in the classical schemes, nor by a
Markov process, as in the original stochastic method,
but uses the variations of the data set, after which the
approximation is enhanced by steps of RungeKutta
type.

In this paper the model was kept as simple as pos
sible, in order to be able to describe the evolution ac
cording to the publicly available data sets. Neverthe
less, it can be improved concerning several aspects,
which might open further research topics for the fu
ture.

The first approach in this direction would be to
consider that also other parameters than the transmis
sion rate are timedependent, like the convalescence
time or death rates. The simulations in the present
paper showed that while for some countries one can
consider these latter parameters as constant, for others
they show a change in time, so this assumption would
be a natural enhancement of the current model.

However, in this way one is faced with the chal
lenging task of improving also the optimization algo
rithm used for parameter fitting, since in this case one
has more than one timedependent parameter. Further
research topics may open therefore in the direction of
developing such algorithms for parameter fitting for
ordinary differential equations in general situations,
not only in epidemic models.

Another direction of improvement of the present
model may consist in introducing more states, corre
sponding to different degrees of severity of the illness
(asymptomatic, symptomatic, hospitalized) as in [11],
or a further state of patients on intensive care units.

The susceptible population can also be split in
more compartments, as confined or not, see [10], or
one can handle different states after the infection, such
as symptomatic/asymptomatic in combination with
detected/undetected, as in [6]. However, in the case of
a more complex model, statistical data for the corre
sponding compartments should be available and one
has to decide if the parameters of the model are con
sidered as timedependent or not.

Therefore, considering both directions simulta
neously, i.e. combining more states with time
dependent parameters which have to be fitted to given
data, would be the most challenging task in extending
the present model.
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